skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Xuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A synthetic potential-guided hybrid search algorithm for chemoenzymatic retrosynthesis, enabling efficient synthesis planning of molecules. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Free, publicly-accessible full text available December 23, 2025
  4. Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change. 
    more » « less
  5. Prayer animal release (PAR)—a traditional “compassion‐based” religious practice of releasing captive animals into the wild to improve the karma of the releaser—has been regarded as a major anthropogenic pathway facilitating species invasions worldwide. However, comprehensive, quantitative assessments of PAR‐related invasion risks, crucial for the development of mitigation strategies, are lacking. To address this knowledge gap, we conducted a literature review of the prevalence of PAR events and examined the overlap between PAR intensity across China and habitat suitability for non‐native vertebrates released in these events. Our results revealed that 63% of the areas with high PAR intensity in China were also suitable for non‐native vertebrate establishment, a degree of overlap that was greater than expected by chance. In addition, field surveys in China detected higher richness of non‐native fishes at PAR sites than at non‐PAR sites. These findings imply an overall high risk of biological invasions associated with PARs. We recommend interdisciplinary cooperation among scientists, religious groups, and government agencies to effectively manage PARs and reduce the associated bioinvasion risk. 
    more » « less
  6. Abstract Outbreaks of zoonotic diseases are accelerating at an unprecedented rate in the current era of globalization, with substantial impacts on the global economy, public health, and sustainability. Alien species invasions have been hypothesized to be important to zoonotic diseases by introducing both existing and novel pathogens to invaded ranges. However, few studies have evaluated the generality of alien species facilitating zoonoses across multiple host and parasite taxa worldwide. Here, we simultaneously quantify the role of 795 established alien hosts on the 10,473 zoonosis events across the globe since the 14 th century. We observe an average of ~5.9 zoonoses per alien zoonotic host. After accounting for species-, disease-, and geographic-level sampling biases, spatial autocorrelation, and the lack of independence of zoonosis events, we find that the number of zoonosis events increase with the richness of alien zoonotic hosts, both across space and through time. We also detect positive associations between the number of zoonosis events per unit space and climate change, land-use change, biodiversity loss, human population density, and PubMed citations. These findings suggest that alien host introductions have likely contributed to zoonosis emergences throughout recent history and that minimizing future zoonotic host species introductions could have global health benefits. 
    more » « less
  7. Abstract It is very attractive yet underexplored to synthesize heterocyclic moieties pertaining to biologically active molecules from biomass-based starting compounds. Herein, we report an electrocatalytic Achmatowicz reaction for the synthesis of hydropyranones from furfuryl alcohols, which can be readily produced from biomass-derived and industrially available furfural. Taking advantage of photo-induced polymerization of a bipyridyl ligand, we demonstrate the facile preparation of a heterogenized nickel electrocatalyst, which effectively drives the Achmatowicz reaction electrochemically. A suite of characterization techniques and density functional theory computations were performed to aid the understanding of the reaction mechanism. It is rationalized that the unsaturated coordination sphere of nickel sites in our electrocatalyst plays an important role at low applied potential, not only allowing the intimate interaction between the nickel center and furfuryl alcohol but also enabling the transfer of hydroxide from nickel to the bound furfuryl alcohol. 
    more » « less
  8. Direct electrochemical halogenation has appeared as an appealing approach in synthesizing organic halides in which inexpensive inorganic halide sources are employed and electrical power is the sole driving force. However, the intrinsic characteristics of direct electrochemical halogenation limit its reaction scope. Herein, we report an on-site halogenation strategy utilizing halogen gas produced from halide electrolysis while the halogenation reaction takes place in a reactor spatially isolated from the electrochemical cell. Such a flexible approach is able to successfully halogenate substrates bearing oxidatively labile functionalities, which are challenging for direct electrochemical halogenation. In addition, low-polar organic solvents, redox-active metal catalysts, and variable temperature conditions, inconvenient for direct electrochemical reactions, could be readily employed for our on-site halogenation. Hence, a wide range of substrates including arenes, heteroarenes, alkenes, alkynes, and ketones all exhibit excellent halogenation yields. Moreover, the simultaneously generated H 2 at the cathode during halide electrolysis can also be utilized for on-site hydrogenation. Such a strategy of paired halogenation/hydrogenation maximizes the atom economy and energy efficiency of halide electrolysis. Taking advantage of the on-site production of halogen and H 2 gases using portable halide electrolysis but not being suffered from electrolyte separation and restricted reaction conditions, our approach of flexible halogenation coupled with hydrogenation enables green and scalable synthesis of organic halides and value-added products. 
    more » « less